Energy Storage Inverter

Ray Hudson, Xantrex Technology Inc.

The DOE Workshop on Systems Driven Approach To Inverter R&D

Maritime Institute, Baltimore, MD April 23-24, 2003

Energy Storage Inverter - Status

- Broad subject
 - Uninterruptible Power Supplies
 - Mobile power
 - Utility scale systems

- There are a variety of applications (loads) with different characteristics that drive inverter requirements
- A variety of storage devices exist with different characteristics that drive inverter requirements
- Electronics for charging the storage device required may be incorporated into inverter

Energy Storage Inverter - Applications

- Power control (short time)
 - Uninterruptible Power Supplies
 - Power quality improvement
- Energy control (longer time)
 - Energy management
 - Peak shaving
- Mobile power
- Renewable generation support

Source: ESA

Energy Storage Inverter - Applications

- Inverter must be compatible with energy storage device
- Inverter often tightly integrated with energy storage device
- Application Topologies
 - On-line systems
 - Switching systems
- "Mature" Systems
 - Small Systems <2kW − high volume production
 - Modified sine wave output
 - Sine wave output
 - Large Systems up to MW significant volume
- "Emerging" Systems
 - Use of new storage technologies
 - Implemented for new application types

Energy Storage Inverter – Storage Technologies

- "Mature" Technologies
 - Capacitors
 - Lead Acid Batteries
 - Lithium Ion Batteries
 - Nickel Cadmium Batteries
- "Emerging" Technologies
 - Flow batteries (ZnBr, VRB, PSB)
 - Other advanced batteries
 - Electro-chemical capacitors ("Ultra" or "Super")
 - Flywheels
 - Superconducting Magnets
 - Hydrogen (Fuel Cells)
 - Other mechanical storage (compressed air, pumped hydro)
- Each technology presents some different inverter/charger requirements

Energy Storage Inverter - Market

- Electricity storage device sales \$15B (source ESA)
- "Mature" products are a multi billion \$ market
- "Emerging" market segment is small but growing
- Strong demand for improved power quality as dependence on electrical equipment increases
 - computers
 - internet
 - communications
 - security
- Increasing opportunities for energy management systems as electricity market becomes more competitive

Energy Storage Inverter - Future

- Lower cost per kW
- Higher reliability
- Higher efficiency
- Smaller size per kW
- Higher unit volumes
 - Increasing demand
 - Greater use of common modules
- Higher level of integration
 - Semiconductor devices
 - Control
 - Passive components
- Support for new and emerging storage technologies
- Transition from modified sinewave to sinewave for smaller systems
- Expanded communication features standard protocols
- Failure prediction features
- Factory configured systems with generation and storage combined

Common Electrical/Mechanical Characteristics

- Sensitivity to Perturbation
 - Very low sensitivity
 - Job is to protect loads against perturbations
- Utility-interactive/Stand-alone
 - Either or both depending upon application
- Capacity (Continuous, Surge, Overload)
 - Varies with application (from Watts to Megawatts)
 - Typical surge and overload requirement of 2x+ of nominal
- Dimensions Size and Weight
 - Varies with application
 - Smaller and lighter is better
 - Inverter typically small compared with energy storage device

Common Electrical/Mechanical Characteristics

- Communications (Local/Remote)
 - Limited requirements for smaller systems
 - Elaborate expectations for larger systems
 - Not yet standardized
- How Much Reliability
 - Must support system warranties (1-2+ years typical)
- How to Measure It
 - Lots of real world historic data for smaller systems
 - Calculations for new systems
- Is Degradation Acceptable?
 - Not for most applications
 - Install and forget about until needed
 - Some energy storage device degradation is typical

Common Electrical/Mechanical Characteristics

MTBF

- Must support warranty and application
- Off-line systems operate rarely
- On-line systems operate continuously
- Xantrex products range from 20,000-80,000+ hours
- Storage device is typically the issue

Overall Lifetime

- Consistent with application and energy storage device
- Longer than lifetime of energy storage device
- Can Reliability Trade Off with Cost
 - − Yes − but high reliability is a requirement
 - Market exists for "Premium" systems
- Key electrical design consideration is storage device voltage and voltage range – strongly impacts inverter

What is Missing from Today's Inverters?

- Lower cost
- Higher reliability
 - Methods for predicting reliability
- Higher Efficiency
- Enhanced communications
 - Standardized protocols
 - Greater connectivity internet, wireless, ...
- Support for emerging storage technologies
- Support for specialized applications
- Development of tools for optimizing applications
 - Capture value for power quality
 - Sizing of larger energy storage systems

Issues

Performance

- Inverter developments to support new storage technologies
- Higher efficiency
- Higher reliability

Cost

- Cost curve always going down
- Some systems are commodity items (smaller "mature" systems)
- Inverter is often a small part of the cost of an energy storage system

Market

- Market growing
- Electricity reliability expectations growing

Conclusion

- There is a model from the energy storage industry for the inverter requirements:
 - Inexpensive
 - Works
 - Reliable

